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Abstract 
Digital technologies have enabled massive and continuous production of data that can be used to study 
and improve health. In this paper, we discuss how digital technologies have been used in public health; 
outline potential opportunities for using these technologies and data in the study of pre-hospital diagnostic 
delays; discuss critical legal, ethical, and methodological challenges; and provide guidance on what 
researchers should consider when using these data. This is not meant to be a comprehensive review of the 
field. We aim to highlight contributions that might be relevant to the topic of pre-hospital diagnostic delay 
while also providing some history on how these data sources have been used in public health.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
 
Public health researchers and practitioners began developing methods that analyzed online media for the 
surveillance of infectious diseases in the 1990s.1,2 One of the earliest systems was the biosurveillance 
system, ProMED - Program for Monitoring Emerging Diseases – introduced in 1994.3 PROMED collected 
and shared data on infectious disease outbreaks that affect plants and animals, expert comments on 
infectious diseases, and moderated news stories using mailing lists and listserv subscriptions. Other systems 
such as the Global Public Health Intelligence Network (GPHIN) and HealthMap founded in 1997 and 
2006 respectively, focused on automated extraction of information from news aggregators, chatroom 
discussions and blogs.4 A detailed overview of Internet-based biosurveillance systems including a list of 
systems can be found in several review articles including, Hartley et al. (2013),1 O’Shea (2017)5, 
Milinovich et al. (2014)6, and Choi et al. (2016).7  The goal of these systems was to augment traditional 
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approaches to disease surveillance by providing free and timely information on disease outbreaks even in 
remote regions. These systems were used by government agencies, and public health organizations and 
officials including, the World Health Organization (WHO), and were noted in multiple reports to have 
captured early reports of disease outbreaks on the Internet prior to disclosure from official sources.8–11 
 
Due to its initial focus on infectious diseases and biosurveillance, a significant number of studies and 
platforms using data from the Internet for public health research and practice have focused on infectious 
diseases, especially influenza and influenza-like diseases. A systematic review on digital health 
surveillance published in 2021 identified 755 studies, the highest proportion (i.e. 25%) were focused on 
infectious diseases.12 Many of the studies included in the review evaluated similar or the same ideas in 
different contexts (54 countries) and using different sources of data (26 digital platforms). Studies have 
suggested that these non-traditional sources of data may be best suited for studying specific diseases, such 
as those with seasonal trends and short incubation periods, an observation that might also apply to the 
study of other public health topics.13,14  
 
Approaches to using Internet and other non-traditional data sources for surveillance have evolved in the 
last thirty years; dovetailing with novel advances in technology, data generation, and artificial intelligence. 
Novel data sources have emerged, and existing sources of data have been used in new ways, including 
consumer reviews of businesses, products or services, crowdsourcing, social media, remote sensing/place 
data (i.e., satellite images, street view images, point of interest data, geolocated/GIS data), news, 
wearables/sensor data, mobile phone data and others (see Table 1 for definitions). These data have been 
used for a variety of public health applications. As noted, some uses include syndromic surveillance of 
infectious diseases; surveillance of chronic disease risk factors; pharmacovigilance; understanding patient 
sentiments and healthcare utilization; studying population mobility and response to public health 
emergencies and interventions; monitoring social determinants of health; and monitoring health 
misinformation.  
 
Table 1: Definitions 

Term Definition used in this article  

Review Websites Websites that display user opinions on services 
and institutions. 

Crowdsourcing The collection of data or completion of activities 
by enlisting a community or large group of 
people. Crowdsourcing is sometimes referred to 
broadly as citizen science, or specifically as, 
participatory disease surveillance in the public 
health context.  

Social Media Internet networking and information sharing 
platforms.   

Search Data/Queries Information submitted to Internet search engines. 

Remote Sensing Information about the earth gathered through 
satellites. 

News Online news media. 

Wearables / Sensors Devices that collect physiological, movement and 
other types of data for health purposes. Sensors 
can be embedded in smartphones, fitness trackers, 
wristbands etc. 

Mobile phones Data from mobile phones including, call data 
records (CDR), and Global Positioning System 
(GPS) location data. Other data, including, 
Bluetooth used in contact tracing will be mentioned 
but not discussed in-depth. 
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In this paper, we provide an overview of digital technologies and data, their applications and highlight 
studies published between 2011 and 2022 that capture important ideas that could be relevant for 
studying diagnostic delays. Specifically, we present the following: (1) a review of digital technologies and 
data and their use in public health; (2) potential opportunities for using digital technologies and data 
sources to understand pre-hospital diagnostic delay; (3) challenges with using digital technologies and 
data for public health research and application; and (4) recommendations on what researchers should 
know about digital technologies and data sources before or while designing a research study.  
 
USES OF DIGITAL TECHNOLOGIES AND DATA SOURCES IN PUBLIC HEALTH 
 
We provide an overview of the applications of various digital technologies and data sources.  
 
Search Data 
The first studies exploring the use of search queries for disease surveillance used data from Yahoo and 
Google and were published in 2008 and 2009, respectively.15,16 Using a list of influenza-related terms 
and additional queries that correlated with prevalence of influenza and influenza-like illnesses, 
researchers developed models for forecasting temporal trends of the same. The model estimates were 
compared to and shown to be significantly correlated with official reports from the United States Centers 
for Disease Control and Prevention (CDC). The system developed by Google was named Google Flu 
Trends and was deployed for public use. Many issues were later raised about the Google Flu Trends 
system, including its deviation from CDC reports of influenza-like illness and the lack of precision in the 
selection of terms that were used in creating the model.17,18 Researchers proposed solutions that focused on 
both addressing the challenges associated with the data and the methods.19 Similar methods have been 
used in forecasting other infectious diseases including, MERS; cholera; dengue; malaria; hand, foot, and 
mouth disease; Zika; and chicken pox.20–22 In general, early warning systems using search data have been 
shown to be most suitable for vector-borne and vaccine preventable diseases and have been useful for 
predicting disease incidence or prevalence several weeks in advance.13,23  
 
In most cases, search data is easier to access and process than the other data sources mentioned in this 
paper so there is a plethora of studies using these data. In addition to infectious disease surveillance and 
forecasting, web searches from a variety of platforms have been used in a range of public health 
applications. These applications have taken advantage of the global use of search engines for seeking 
health information and the assumption by users that these platforms lend some degree of privacy when 
compared to social media.24 Studies have even used these data to study information seeking for sensitive 
or stigmatized health conditions and topics including, HIV/AIDS, and mental health.25,26 
 
To illustrate the broad applicability of search data for public health, we provide examples. In one study, 
researchers focused on search behaviors of guardians to children with biliary atresia or hypertrophic 
pyloric stenosis to show that data on guardian behaviors can be used for detecting childhood diseases.27 
Some studies have characterized general online health seeking behavior,28 with some focusing on 
describing health information needs and misconceptions in a particular region.29 Studies on eye diseases 
have focused on mapping search patterns across regions or looking at the association between searches 
for terms such as, cataract, glaucoma, and diabetic retinopathy, and the prevalence of each condition.30,31  
Temporal, spatial and diurnal variations in chest pain have been shown and also correlated with data from 
the CDC.32 Others have looked at searches for risk factors associated with obesity and other chronic 
diseases.33 Cyclical trends have been noted for searches for suicide and depression related terms.34  
Search data has also been used for forecasting demand for medical devices.35 Use of search data during 
the Covid-19 pandemic have included monitoring of interest in self-medications,36,37 misinformation,38 
insomnia,39 assessing associations between symptom searches and Covid-19 cases,40 and forecasting trends 
in COVID-19 dynamics.41  
 
Though not classified as a search engine, access logs of the online encyclopedia, Wikipedia, is another 
data source that has been used in disease surveillance and forecasting. Studies have accessed useability 
for Cholera, Dengue, Ebola, HIV/AIDS, Influenza, Plague and Tuberculosis.14,42  
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Analytic Approach 
Studies using search queries generally start with a generation of terms or keywords. Depending on the 
focus of the study, terms could include disease names (e.g., cholera, dengue), etiological agents (e.g., 
brucella), symptoms (e.g., cough, vomiting), medications (e.g., chloroquine) or general treatment options 
(e.g., malaria treatment), colloquialisms (e.g., TB), effects of disease on different populations (e.g., Covid 
and children) etc. This step can be highly subjective and requires context, culture, language, and subject-
matter expertise.43,44 Most studies generate keywords based on expert opinion. However, there are other 
approaches (i.e., data mining, and machine learning) that have been explored, and this will be further 
discussed in the bias section since it applies to other data sources. The wrong set of keywords could lead to 
spurious or no correlations. 
 
Search data are available at different time scales (e.g., days, weeks, months) depending on the volume 
and frequency with which the data is being generated. The data structure varies across search engine 
platforms, from absolute counts to normalized values. For example, Google Trends (Table 2) does not 
report the total search volume, instead it provides values normalized on a scale from one to one hundred, 
relative to the popularity of a specific search term across time and geography.  
 
Next the search terms are filtered to identify relevant features for machine learning or variables for a 
regression model. Methods as simple as Pearson correlation and as complex as Artificial Intelligence 
approaches have been used to establish associations between search data and forecast future trends, 
respectively. In infectious disease forecasting, these methods have been used to predict different aspects 
of disease dynamics including, when an epidemic will peak, how many people will be infected at the peak, 
when it will end and the incidence/prevalence of the disease in a population. These data and datasets 
from other digital platforms were used to address the delay (usually in weeks) between when disease 
epidemic data was collected and when it was shared by official public health surveillance systems.  
 
To validate trends observed in the search data, researchers have used data from official sources (such as, 
Ministries of Health, Centers for Disease Control, or the World Health Organization), hospitalization 
records and surveys.  
 
Individual-level search data is typically not publicly available but could be obtained through a 
collaboration with the company that owns the data. Since this data is at the individual level, predictions 
and inferred diagnosis can also happen at that level. However, there are many ethical issues with 
individual level diagnosis given its potential emotional and psychological impact. In some cases, a study 
begun with individual level data and was then aggregated to the population level prior to analysis (e.g., 
the study by Sadilek et al. (2020) on forecasting Lyme disease45). Additional information on individual-
level analysis is provided in the section on  
Opportunities for Using Digital Technologies and Data Sources to Study Pre-Hospital Diagnostic Delay.  
 
 
Social Media 
Social media platforms have allowed the sharing of opinions, preferences, and behaviors in real-time and 
across geographic regions. Opinions expressed by users in one part of the world can easily impact 
decisions made by users in another part of the world as has been shown for web-based content on anti-
vaccine sentiments.46  Some of the earliest studies on the use of social media platforms for public health 
surveillance focused on monitoring influenza,47 cholera,48 and vaccine sentiments.49 Researchers were 
interested in how behavioral information shared on platforms such as, Twitter, could be used in tracking the 
spread of infectious diseases and sentiments towards public health interventions.  
 
Similar to search data, many studies have explored the use of social media data from diverse platforms 
for public health research and practice. Twitter is overrepresented in the field because it made its data 
available to academics for research almost since its launch in 2006. A few examples on the use of social 
media data for public health follow. Social media data has been used to characterize sleep issues based 
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on usage patterns and the inclusion of keywords such as, insomnia and Ambien or sleep aid mentions in 
tweets.50 Patient reviews or discussions of experiences in healthcare settings on social media have been 
used as a measure of quality of care.51 Tweets have been analyzed to understand disease and vaccine 
sentiments during outbreaks.49,52–56 Geolocated data aggregated to the neighborhood level has been 
analyzed to characterize happiness, diet, and engagement in physical activity, and to study spatial and 
gender disparities in these health outcomes.57–60 Systems have been developed to support local 
departments’ of health foodborne illness surveillance efforts by mining reports on social media.61–64  In 
studies linking social media data to medical records, researchers have demonstrated that users’ language 
can be used for disease screening, identifying indicators of disease risk, and extracting information on 
disease epidemiology.65–67 A number of studies have also focused on pharmacovigilance – the study of 
adverse medicine/vaccine effects.68–71 Social media data has also been used to study sensitive and 
stigmatized topics.72,73 
 
Analytic Approach 
Similar to search data, the first step in the analytic process for social media data usually involves 
developing a set of keywords for data extraction. Depending on the social media platform, extracted 
data can include the following attributes: username, the user’s unique platform identifier, the message, 
timestamp of posted message, and geographical location such as, latitude and longitude (if the user has 
opted to share), number of followers, number following, and biographical information associated with the 
account. Platforms, such as, Twitter, only share information from public accounts.74 Researchers collect data 
from an Application Programming Interface (API) or through third-party apps created to process and 
provide data to businesses.  
 
Unlike search data that is usually processed (i.e., aggregated) prior to being made publicly available for 
research and can be easily managed in a single file, data from social media platforms can be enormous 
requiring pre-processing and processing to extract meaningful information. The ratio of noise to signal can 
be significant depending on the specificity of the keywords used in extracting the data and the topic of 
study. Data analysis steps can include, manual and/or machine annotation of relevant and irrelevant 
content to produce a corpus for machine learning classification; data mining to create data tables (e.g., 
weekly counts of individuals reporting engagement in physical activity) or natural language processing to 
extract data themes; and interpretation of findings. If the study involves spatial analysis, geospatial 
methods will be needed to map data coordinates to geographic regions prior to statistical analysis.  
 
To further illustrate, analytical steps are presented for two studies. The study by Nikfarjam et al. (2015),68 
on mining adverse drug reactions with word embedding features involved the following steps: data 
collection from an API, annotation, developing/expanding on an adverse drug reaction lexicon, a 
conditional random fields classifier was used to label user sentences, learn word embeddings, and embed 
cluster features. In another study by Hernandez et al. (2022)75  which focused on understanding changes in 
diet during the Covid-19 pandemic, the analytic steps involved obtaining geolocated data from Twitter 
API, use of data mining to filter the dataset to focus on tweets containing mentions of food items, a sample 
of the data was annotated into negative and positive classes, machine learning methods were developed 
to classify the remainder of the tweets, the data was further classified into three classes (fast food, healthy 
food and alcohol) using data mining techniques, geospatial methods were used to map the tweets to US 
regions and regression methods were used to study changes in diet.  
 
Data used in external validation come from the same sources as those used for search data studies, 
namely, official sources, hospital records and surveys. Studies have tried to match patient medical records 
with their social media postings to demonstrate the validity of using social media platforms for public 
health surveillance.76 Data is usually provided at an individual-level, however, due to privacy concerns and 
potential for harm, individual-level analysis is discouraged. Findings from most studies are presented at the 
population level.   
 
Although examples are limited, surveillance tools developed using data from social media platforms have 
been integrated into public health practice; one example is foodborne illness surveillance.62,63 
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Reviews  
Review websites such as, Yelp and RealSelf, were borne out of a lack of information on the quality of 
services provided by medical providers and institutions on the Internet.77–79  Reviews on the Internet have 
been described as an online version of “word-of-mouth testimonials”.80 Reviews can provide businesses 
with useful input to improve and change customer service practices. Because reviews are unstructured, they 
are not limited to biased predefined categories usually included in surveys (e.g., post-hospital-visit 
surveys).80,81 Most studies using review data focus on a specific business (e.g., hospitals) or specific product 
(e.g., food products). Data from review websites have been used in several public health applications, 
though not as widely as search or social media data likely due to data access challenges and the structure 
of the data, which limits the types of questions that can be investigated.  
 
Broadly, studies using Internet reviews can be classified into patient or user experiences at healthcare 
institutions, experiences of products that affect health, and reviews of businesses that have a health impact 
(e.g., vaping shops). We present a few examples. Seltzer et al. (2022) used data from Yelp to 
characterize patients’ experiences of obstetric care in hospitals.82 Agarwal et al. (2022) used machine 
learning to extract themes associated with negative and positive reviews of substance use disorder 
treatment facilities in the USA. 83 Donnally et al. (2018)84 and Furnas et al. (2020)79 compared reviews of 
spine surgeons and plastic surgeons, respectively across multiple platforms. Tong et al. (2022) manually 
coded reviews on Yelp to document examples of institutional racism in healthcare facilities and describe 
recurrent themes.85 Other businesses that have been studied include, vaping shops, hookah bars and 
tobacco vendors,86–88 and mental health treatment facilities.89  
 
Reviews are one data type that have been integrated into public health practice. For example, Yelp and 
the Los Angeles County Department of Public Health collaborated to display restaurant hygiene ratings on 
restaurant profiles, giving users access to this information when making a choice about where to dine out.90 
The New York City Department of Health and Mental Hygiene used reviews to identify foodborne illness 
and outbreak reports that were not reported through their standard systems.91,92 Other examples of food 
safety studies include, the application of an artificial intelligence algorithm to Amazon reviews to identify 
unsafe food products,93 assessing restaurant quality and sanitation,94 and comparing foods mentioned in 
foodborne illness reviews to those implicated in outbreaks reported to the CDC.95 
 
Analytic Approach 
The process used to analyze online reviews for public health applications and research usually includes 
data mining, manual or automated labeling, natural language processing or quantitative modeling. Data 
access and gathering might require a collaboration with the company since the data is not usually 
available through an API. Companies such as, Yelp, make a limited subset of their data available for 
academic research (Table 2).  
 
Qualitative analysis of these data is typically focused on extracting themes or clusters of information. 
Manual coding is sometimes required prior to training and applying machine learning methods. However, 
some studies completely rely on manual coding if machine learning or artificial intelligence methods cannot 
capture the nuances present in the data. Quantitative analysis might involve using correlations or 
regression to measure the association between ratings, volume of reviews, and other quantitative 
measures, and health outcomes (such as, mortality) or rankings from official websites such as, the Hospital 
Consumer Assessment of Healthcare Providers and Systems (HCAHPS).51,96 
 
There are concerns about the quality and validity of reviews. Studies suggest negative review fraud is 
likely committed by competitors.97 To integrate reviews into traditional surveillance systems, public health 
authorities contact customers who have submitted a review for additional information. This is one approach 
for verifying the validity of reviews.64 However, this process can be cumbersome and costly when handling 
large volumes of reviews.   
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Other Data Sources and Applications  
 
Sensors, Wearables and Apps 
A quick search of “health apps” on the Apple store retrieves thousands of apps; from those measuring 
heart rates, to meditation apps, all promising improvements in health. However, few of these apps have 
been thoroughly tested or are based on methods that have been scientifically evaluated. Apps can be 
used for patient engagement, facilitating treatment and sustaining treatment gains.98,99 Applications for 
patient engagement might be the most relevant for the topic of pre-diagnostic delay. We also discuss 
possible applications in the next section.  
 
Wearable sensors can be used to detect and collect physiological and movement data in a variety of 
applications. Wearable technology is widely used and the smartphone is the most widely used passive 
sensor.100,101 According to reports, there were 600 million wearable devices in use in 2020. Based on 
current trends, this number is expected to rise to 1100 million in 2022.102 The majority of smartphones can 
also detect voice, touchscreen pressure, ambient light, ambient pressure, and geographic position. 
Wearable gadgets, like gloves, insoles, hats, and smartwatches, are often attached to the wearer's body 
directly, inside of clothing, or in semi-rigid structures.101,103 Well known wearable devices such as the Apple 
Watch can track fitness activities, sleep patterns, blood oxygen level, ECG and step count. Another 
example is Fitbit Sense, which can track fitness activity, skin temperature, ECG, electrodermal activity and 
stress management.101 The amount of data collected by wearable sensors over long periods of time can be 
massive.  
 
Studies have discussed both the useability and accuracy of wearable sensors.104–107 A notable example is 
the pulse oximeter, which has been shown to perform poorly on darker skin, which can lead to delayed 
treatment and possibly death.108,109 The accuracy and reliability of wearable sensor especially in clinical 
settings is extremely important given its possible impact on health outcomes.  
 
 
Sound 
Clinicians frequently use audio signals produced by the human body, such as digestive sounds, breathing, 
vibrations, and heartbeats, to diagnose or track the progression of diseases.110 During the Covid-19 
pandemic, researchers used crowdsourcing approaches to develop datasets of audio recordings including 
cough, speech, voice, breathing, and other sounds produced by Covid and non-Covid patients.110–121 The 
data was collected from social media sites (such as, YouTube, Instagram, Twitter), website recordings and 
using existing recording apps on mobile phones (such as, Wechat App). Examples of apps and 
crowdsourced datasets included the COVID-19 Sounds App,122 Corona Voice Detector,123 Coswara 124and 
COUGHVID.114 The datasets included a diversity of participants across geographic locations, gender, and 
age. Speech processing, artificial intelligence, and other approaches were applied to study how these 
data could be used in Covid-19 surveillance and diagnosis. Some studies recommended using artificial 
intelligence tools built on these data for Covid screening at school and work, and for more efficient testing.  
 
Mobile Phone Data  
Human mobility and activity patterns can be extracted from mobile phone call records, social media check-
in (defined as the act of reporting or registering one’s presence at a particular location using a mobile 
device) and other types of location data.125–130 Movement information extracted from mobile phone call 
records have been aggregated and analyzed for modeling of disease epidemics.131–135 Call Records Data 
usually includes, a time stamp, the GPS coordinates of a nearby cell tower, and a unique identity for each 
subscriber.136 GPS location data, which was widely used during the pandemic typically includes, a time 
stamp, the GPS coordinates of the phone, and a unique identity for each user.136 Prior to the Covid-19 
pandemic, these data was mostly available to select research groups who had relationships with telecom 
companies. The public release of data by companies such as, SafeGraph, and Cuebiq during the 
pandemic created new opportunities for studying movement and its association to disease spread and the 
impact of public health interventions during the pandemic. For example, researchers used mobile phone 
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location data to study inequities in Covid burden and how different socioeconomic groups responded to 
social distancing policies.137,138 Mobile phone Bluetooth data was also used in contact tracing 
applications.136  
 
Remote Sensing Data 
Remote sensing and place data from satellites, street view images, and geographic information systems 
have been used recently to study the association between the built environment and health outcomes.139–141 
The availability of efficient artificial intelligence methods that can be applied to classify and extract 
information from images has created new opportunities for studying the presence of resources in 
neighborhoods. Crosswalks, buildings, greenery, and streets, have been identified using images, and the 
data used to examine their relationship with chronic health outcomes and socioeconomic factors.140,141,145–

147 High levels of agreement between neighborhood characteristics extracted from images and field 
assessments have been used to demonstrate the dependability of employing images to extract data on 
physical features.142–144  
 
Opportunities for Using Digital Technologies and Data Sources to Study Pre-Hospital Diagnostic Delay 
 
Pre-hospital diagnostic delay is defined in this paper as the time period prior to a patient reaching the 
care environment in which a diagnosis takes place. Here, we make five recommendations with 
accompanying examples that may provide insights into how digital tools and data sources can be used in 
studying and addressing pre-hospital diagnostic delay.  
 
First, both individual-level and aggregated data from search engines can be used for screening patients, 
“diagnosing” or predicting health outcomes. Similar approaches have been developed using data from 
social media, mobile apps, and wearables.100,148 
 
Studies have used individual-level search data to screen or “diagnose” Type I diabetes, 
neurodegenerative disorders, cancers, and mental health disorders. Hochberg et al. (2019) developed 
models for diagnosing Type I diabetes early based on the search behavior of 11,050 search engine users 
with diabetes and a control group of 11.5 million users.149  The patient group included users whose 
searches stated a disease diagnosis. White et al. (2018) developed classifiers for detecting 
neurodegenerative disorders, specifically, Parkinson’s disease (PD) and Alzheimer’s disease (AD) from 
individual search logs.150 Similar to the previous study, cohorts of “patients” and “controls” were 
developed. The analysis included 31,321,773 search engine users. Evidence used in the developed models 
are not available to clinicians, including, longitudinal query repetition, and mouse cursor activity. White et 
al. (2017) focused on how to use search logs for screening patients for lung carcinoma.151 Gold standard 
data was unavailable. The presence of disease was determined based on a “landmark query” after 
several months of symptom searches. Searches after the “landmark query” focused on medications and 
treatments. Positive cases included 5443 users and negative cases included 4,808,542. Yom-Tov et al.152 
identified individuals with mood disorders by using search queries about medications used to treat the 
condition as well as changes in their behavior close to the occurrence of mood disorder events. Eichstaedt 
at al. (2018), showed that they could use patients’ Facebook statuses to diagnose depression.66 Ofran et 
al.153  identified people with a likely cancer diagnoses and then tracked their information seeking over 
time by setting a threshold on the quantity of cancer-specific queries. Lastly, Paparrizos et al.154 predicted 
the diagnosis of people who self-identified as having pancreatic cancer prior to diagnosis. In all these 
studies, the authors state that individual search logs could be useful in the early screening and diagnosis of 
these diseases.  
 
Second, apps can be used to increase access to information that can encourage healthcare seeking 
behavior and increase diagnosis. Specifically, apps developed for patient engagement could (1) focus on 
education about disease conditions, risks, and treatment; (2) be used to overcome structural barriers 
regarding distance to medical facilities, cost of consultation, stigma or fear associated with some health 
conditions by providing access to information; (3) provide information on how to seek financial assistance 
to cover treatment cost; and (4) find locations of nearest health centers for diagnosis and treatment. For 
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example, the HealthMap vaccine finder was developed to help patients locate the nearest facility offering 
a specific type of vaccine.155 Several apps with a user-centered design have been developed to educate 
patients about different medical conditions and treatment options. See examples in Alberts et al. (2020), 
Birkhoff et al. (2017) and Roger et al. (2018).156–158 
 
Third, Internet reviews and social media can be used to understand patients’ perceptions of care at 
healthcare institutions including experiences of discrimination that could be deterrents to seeking care. 
There are many studies showing that patient reviews of healthcare institutions on Internet platforms 
correlate with reviews from official sources. Examples of such studies include research by Hawkins et al. 
(2016) using data from Twitter,51 Ranard et al. (2016) using data from Yelp,81 and Greaves et al. (2012) 
using data from a government owned hospital review website.159 Additionally, at least one study has 
shown that specific types of discrimination could be identified from healthcare reviews.85 These information 
could be useful in addressing the broader systemic issues and policies that impact certain populations from 
seeking diagnostic care.  
 
Fourth, mobile phone and remote sensing data can be used to study access to healthcare locations for 
populations most impacted by diagnostic delays for the specific diseases of interest. Mobile phone data 
has been widely used to study movement and its relation to disease spread and public health interventions 
especially during the Covid pandemic.128,136,138,160 Similar approaches can be used to map locations of 
healthcare facilities and to study variability in access to healthcare resources.161 Nguyen et al. (2018) and 
Maharana et al. (2018) showed that AI can be applied to neighborhood satellite and street images to 
study access to neighborhood-level built environment indicators that have been associated with health and 
well-being. 139,140,162,163 
 
Fifth, all of the aforementioned data types can be used to study other social determinants of health. These 
datasets can be combined with neighborhood economic, demographic and health data to answer the 
following questions. Who is affected by diagnostic delays? What role does geography, race/ethnicity, 
socioeconomic class, immigrant status, gender, sexual orientation, or culture have in observed disparities? 
Are there specific policies that hinder access to diagnostic resources? How does disparities in Internet 
access impede diagnostic care? What role can community health workers play in reducing diagnostic 
delays? 
 
 
Challenges with Using Digital Technologies and Data for Public Health  
 
There are many ethical and legal challenges associated with the use of digital data and tools for public 
health. These include ensuring public benefit; ensuring scientific validity and accuracy; protecting privacy; 
preserving autonomy; avoiding discrimination; validation; misinformation; the cost of false detections or 
predictions; mental and emotional impact of unsolicited diagnosis; and preventing digital inequality.164–167 
Methodological challenges include, linking these digital data sources to traditional data, such as, electronic 
health records, and bias in the analytical process.  
 
Ethical and Legal Challenges 
 
Studies using digital data sources can be harmful to certain groups or individuals. It is therefore important 
to weigh the risk versus benefits before pursuing a research question. If a research study is likely to 
exacerbate existing health inequity, marginalization, or general disadvantage for a specific population, 
then it shouldn’t be pursued.  
 
Furthermore, ensuing validity or accuracy can be challenging in many of these data sources. For example, 
online reviews can be fake or edited to make a business look better than it actually is. Also, not everyone 
searching for a particular illness on a search engine is sick, there are many other reasons (including, 
education and curiosity) why an individual might be interested in researching information on an illness. 
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However, compared to surveys, reports on social media, which are generally voluntary, are less likely to 
be affected by recall bias or social desirability bias.168–170  
 
Also, individuals who use online platforms might not always be aware that their data can be used for 
research and there are no Institutional Review Board (IRB) standards for informed consent, unless the 
research involves contacting users to collect additional information beyond what is considered publicly 
available. There have been several publications recommending ethical guidelines that should be followed 
by researchers, including, not linking individual information from multiple sources since this can lead to user 
identification and the disclosure of sensitive personal information, not publishing social media postings since 
this can be easily linked to an individual with a simple search on Google or other search engines.164,165,167  
 
Furthermore, there are ethical concerns regarding the impact of research. A lack of representation or 
“missingness” of certain populations from research data implies that they are less likely to benefit from the 
findings, technology and policies resulting from a research study.171,172 Also, analysis and predictions at the 
individual level can cause unnecessary emotional and psychological harm especially if unsolicited. Lastly, 
there is unequal access to the Internet and digital health technologies, and disparities in digital literacy, 
implying that solely relying on digital tools and data might not be beneficial to poor, marginalized and 
vulnerable populations.173 Addressing this challenge might require combining digital data and tools with 
data from traditional systems to achieve equity across populations.  
 
Methodological Concerns 
There are various methodological challenges that have been associated with the use of digital data and 
technology for public health. These challenges, which include data linking, representation bias, algorithmic 
bias, keyword bias, and platform bias, might apply to a single data source or multiple data sources.  
 
Data Linking. Several studies have shown that it is possible to link social media to medical records 
provided that patients consent to have their records linked by providing access to their social media 
accounts.76,174,175 However, this process is not easy to implement when dealing with millions of records from 
a social media site or when user information are unavailable. There are also privacy concerns especially 
when working with sensitive health topics, for example mental health.  
 
Representation Bias.  Lack of demographic data in some social media sources makes it difficult to assess 
and quantify demographic representation in these data. Studies have emphasized the need for 
demographic data to better understand who is included and who isn’t, and to make more targeted public 
health assessments and recommendations.57,58,176,177 In an effort to obtain accurate evaluations of users' 
overall wellbeing using Twitter data, Jaidka et al. (2020) and Iacus et al. (2020)  tried to reduce 
demographic bias by stratifying Twitter users based on their geographic distributions.178,179 Cesare et al. 
(2019) uncovered disparities in reported physical activity prevalence after inferring and stratifying the 
data by gender.57 Furthermore, Weeg et al. (2015) reported that after stratifying Twitter users by 
demographics, the association between findings from social media data and those from a nationwide 
survey was greatly increased.180 
 
Algorithmic Bias. Bias in machine learning and artificial intelligence algorithms has been widely discussed in 
recent years.171,181,182 Analysis of data from the aforementioned digital data sources, usually require the 
application of machine learning algorithms. It is therefore important for researchers to be aware of current 
concerns about machine learning algorithms and ensure that application of these algorithms do not 
perpetuate existing biases. There are many papers discussing fairness and ethical frameworks for machine 
learning algorithms that should be referenced prior to research.183–187   
 
Keyword Bias. Most studies select keywords for extracting data from the aforementioned sources 
manually; either based on expert opinion, previous studies, or social context. A few studies have 
highlighted the potential impact of culture and context in the selection of keywords and how research 
findings can be significantly altered if the wrong keywords are selected.43,44 Furthermore, selected 
keywords may be inadequate due to the exclusions of misspellings or slangs. To address bias in the 
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selection of keywords for extracting data, a few methods have been proposed, including, machine 
learning filtering and rule-based filtering approaches.178,188–194 For example, some researchers have 
manually evaluated a sample of tweets after filtering using keywords to ensure that tweets capture the 
intent of the study (for example, in studying influenza, are the tweets indicating that the user is 
experiencing symptoms or does in mention symptoms in reference to something else). Researchers also 
manually label thousands of tweets to develop “positive” and “negative” samples, which are then used to 
train a machine learning or artificial intelligence classifier to identify relevant content.  
 
Platform Bias. Different platforms might capture different population samples implying that the data might 
not be representative. Also, the nature of the platforms (i.e., image, video or text or a mixture) might be 
better suited or adaptive to different types of information. Studies have compared different platforms to 
show differences in content195 and also combined data from various platforms to address bias that might 
be represented in individual platforms.196  
 
Conclusion  
There are many factors to consider when making decisions about using digital data sources for research on 
diagnostic delays. First, it is important to clearly define the research question. The research question will 
determine what data platform would be most useful. For example, to understand user’s comments about 
access to diagnostic tools, social media (such as, Twitter or Facebook) or online forums where a particular 
diagnostic tool is being discussed might be the best options.  
 
Second, consider whether you need a digital data or nontraditional data source to answer the research 
question or if there are other existing datasets that might answer the same question. If a dataset from a 
digital source is appropriate, do you need another dataset to supplement or fill in gaps in the selected 
dataset? Also, can you get access to the dataset, or would you need to establish a collaboration with the 
company to obtain data? 
 
Third, assess whether there are limitations and challenges with using the selected dataset that need a plan 
prior to download and analysis. Also, consider the computational needs of the data. Where will it be 
stored? Do you need special computational tools to analyze the data? Also, consider the ethical challenges 
with using the data. Research using public datasets from the Internet does not usually require an IRB 
review. However, if there are plans to combine these data with another dataset (e.g., electronic health 
records or individual-level survey data), then an IRB might be needed. Demographic representation is 
another important issue to consider. If the data does not represent Census demographics for the region of 
study, that should be addressed with statistical methods or acknowledged in the study. The population 
impacted by the study’s findings must be clearly articulated.  
 
Fourth, appropriate methods should be selected. Sometimes multiple methods are needed throughout the 
analysis pipeline. It is important to consider what methods have been used in similar studies and invite 
individuals with the necessary expertise to join the team. For example, in a paper analyzing text data 
from Twitter, data mining, natural language processing, and statistical modeling might be needed. Also, if 
the study is focused on miscarriages, then clinicians with the appropriate expertise should also be included.   
 
Lastly, it is important to think carefully about appropriate methods for quantifying and communicating 
measures of uncertainty and generalizability. How uncertainty is communicated might depend on the data, 
the methods, and the audience. As previously noted, these digital technologies and data sources might not 
be the solution to addressing certain questions about diagnostic delays. There are disparities in 
smartphone access, and Internet and broadband infrastructure that lead to underrepresentation of low-
income communities in some of these datasets. In cases where the use of data from digital sources might 
create or exacerbate existing disparities, alternative solutions including, using more representative 
datasets or integrating with other datasets must be considered to ensure equitable solutions are proposed. 
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Table 2: Data Access for Frequently Used Platforms 

Type Source URL Access Type Academic 
Program 

Social Media Twitter https://developer.twitter.com/en/products/twitter-api/academic-
research 

Free Yes 

Instagram  https://help.crowdtangle.com/en/articles/4302208-crowdtangle-
for-academics-and-researchers 

Free Yes 

Facebook  https://research.facebook.com/data/ 
 
https://help.crowdtangle.com/en/articles/4302208-crowdtangle-
for-academics-and-researchers 

Free Yes 

YouTube  https://research.youtube/how-it-works/ Free Yes 

Foursquare https://foursquare.com/products/for-academics/ Free Yes (select 
datasets with 
limited 
subscription) 

Reddit  Several scraping tools available online Free/paid No 

Business/Product/ 
Service Review 

Yelp https://www.yelp.com/dataset Free Yes (single 
dataset) 

Vitals Vitals.com Unavailable No 

Amazon Some data available from secondary sources Unavailable  No 

Healthgrades  Healthgrades.com Unavailable No 

Google Google.com Unavailable No 

Place/Location/ 
Remote Sensing 
  

Google 
Satellite/Maps 

https://www.google.com/intl/en-
GB_ALL/permissions/geoguidelines/ 

Free (with 
restrictions) 

Yes 

Search Bing https://www.bing.com/ Unavailable 
(dataset 
released 
during 
pandemic) 

No 

Wikipedia https://dumps.wikimedia.org/other/pageviews/readme.html Free No 

Google  https://trends.google.com Free No 

 
*Some platforms are open to collaborating with academics to provide data that is not publicly available. 

https://research.facebook.com/data/
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