Where are the Health Services Research Opportunities?
A Big Data Analysis with HSRProj

Riyi Qiu1, Yunpeng Zhao2, Yueqi Hu3

1Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC, USA
2Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
3Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA

Advisors: Dr. Lixia Yao and Dr. Bian Jiang
Research Question: How to allocate limited medical research resources to address growing patient needs?

The Assumption: Maximal societal benefits can only be achieved when resources are allocated proportional to the disease burden across the full distribution of diseases and conditions

The model: Research Opportunity Index (ROI)
Research Opportunity Index (ROI)

- Measures the degree of (mis)alignment between disease burden and research resources allocation

- Input Variables
 - Disease burden: treatment cost (b) from claims data
 - Research focus: number of publication (p)
 - Development focus: number of clinical trial (t)

- Calculation
 - Normalize every variable: $b' = b / \Sigma b$, where Σb is total treatment cost of all diseases; same calculation for p' & t'
 - $ROI = \log_{10}(\frac{b'}{p'} * \frac{b'}{t'})$
Goals

- Examine if disease burden and HSR funding are correlated for each disease
- Calculate the ROI by including HSRProj funding information
- Run topic modeling on HSR project titles and abstracts to understand the topics in those funded projects over time
Figure 1 Flowchart of the analysis on HSRProj data. This figure exhibits the methods, tools, and additional datasets that we used to analyze the HSRProj data.

Abbreviations: CUI – Concept Unique Identifier; PheCode – phenotype code vocabulary; ROI – Research Opportunity Index.
Correlations between HSRProj Funding and Disease Burden

Top 5 positively correlated diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pearson Correlation</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute pancreatitis</td>
<td>0.991</td>
<td>3.954e-10</td>
</tr>
<tr>
<td>Other intestinal obstruction</td>
<td>0.936</td>
<td>7.522e-06</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>0.930</td>
<td>1.187e-05</td>
</tr>
<tr>
<td>Conduct disorders</td>
<td>0.893</td>
<td>9.331e-05</td>
</tr>
<tr>
<td>Other hemoglobinopathies</td>
<td>0.891</td>
<td>9.920e-05</td>
</tr>
</tbody>
</table>

Top 5 negatively correlated diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pearson Correlation</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindness and low vision</td>
<td>-0.923</td>
<td>1.814e-05</td>
</tr>
<tr>
<td>Renal failure NOS</td>
<td>-0.910</td>
<td>4.092e-05</td>
</tr>
<tr>
<td>Gonococcal infections</td>
<td>-0.845</td>
<td>5.374e-04</td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>-0.837</td>
<td>6.766e-04</td>
</tr>
<tr>
<td>Substance addiction and disorders</td>
<td>-0.803</td>
<td>1.663e-03</td>
</tr>
</tbody>
</table>
Update the ROI

We calculated the ROI by including HSRProj funding \((f)\):

\[
ROI = \log_{10}\left(\frac{b'}{p'} \times \frac{b'}{t'} \times \frac{b'}{f'}\right),
\]

where \(f'\) is the normalized HSRProj funding.
Updated ROI: Top 4 Over-studied Diseases

- Cervical cancer and dysplasia
- Deep vein thrombosis
- Renal failure
- Sepsis and SIRS
Updated ROI: Top 6 Under-studied Diseases

- Calculus of ureter
- Palpitations
- Atherosclerosis of the extremities
- Spondylosis with myelopathy
- Calculus of kidney
- Acne
Topic Modeling

- A statistical model for identifying topical patterns in a large collection of text bodies
- An example

Results

The top 5 topics among the projects related to cervical cancer:

1. Risk factor
2. HPV Infection
3. Cancer control evaluation
4. Mortality
5. Cancer screen
The coverage of the top 5 topics among the projects related to cervical cancer by year
Conclusions

➢ Limitation
 ➢ The assumption may not always be optimal
 ➢ The topic modeling approach cannot identify fine-grained details

➢ Findings
 ➢ We identified the (mis)alignment between disease burden and research resources allocation for 1,337 diseases
 ➢ Under-studied diseases might suggest future research opportunity for the HSR community
Thank you!